2 research outputs found

    Sequential Strong Measurements and Heat Vision

    Get PDF
    We study scenarios where a finite set of non-demolition von-Neumann measurements are available. We note that, in some situations, repeated application of such measurements allows estimating an infinite number of parameters of the initial quantum state, and illustrate the point with a physical example. We then move on to study how the system under observation is perturbed after several rounds of projective measurements. While in the finite dimensional case the effect of this perturbation always saturates, there are some instances of infinite dimensional systems where such a perturbation is accumulative, and the act of retrieving information about the system increases its energy indefinitely (i.e., we have `Heat Vision'). We analyze this effect and discuss a specific physical system with two dichotomic von-Neumann measurements where Heat Vision is expected to show.Comment: See the Appendix for weird examples of heat visio

    Can One Trust Quantum Simulators?

    Full text link
    Various fundamental phenomena of strongly-correlated quantum systems such as high-TcT_c superconductivity, the fractional quantum-Hall effect, and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models that are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper [Int. J. Theor. Phys. 21, 467], Richard Feynman suggested that such models might be solved by "simulation" with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a "quantum simulator," would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability, and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question "Can we trust quantum simulators?" is... to some extent.Comment: 20 pages. Minor changes with respect to version 2 (some additional explanations, added references...
    corecore